人类白细胞抗原限制性遗传异质性药物毒副作用研究进展

王佳宁, 王晓钰, 施婷婷, 陈麟鑫, 梅虎

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (1) : 1-7.

PDF(1110 KB)
PDF(1110 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (1) : 1-7. DOI: 10.11669/cpj.2021.01.001
综述

人类白细胞抗原限制性遗传异质性药物毒副作用研究进展

  • 王佳宁a, 王晓钰a, 施婷婷a, 陈麟鑫a, 梅虎a,b*
作者信息 +

Advances in the Association of HLA Alleles with Idiosyncratic Adverse Drug Reactions

  • WANG Jia-ninga, WANG Xiao-yua, SHI Ting-tinga, CHEN Lin-xina, MEI Hua,b*
Author information +
文章历史 +

摘要

基因关联研究结果显示,遗传异质性药物毒副作用(idiosyncratic adverse drug reactions,IADRs)与人类白细胞抗原(human leukocyte antigen,HLA)基因家族密切相关。笔者现就近二十年来IADRs与HLA基因关联研究进展及p-i机制、肽库改变模型、TCR库改变模型机制进行综述,以期为个性化精准医疗及药物安全评价提供理论参考依据。

Abstract

Since the beginning of this century, idiosyncratic adverse drug reactions (IADRs) have been proven to be closely associated with human leukocyte antigen (HLA). In this paper, the mechanisms of the HLA-restricted IADRs, including the “p-i” concept, the “altered peptide repertoire” model, and the “altered TCR repertoire” model, were reviewed in detail. The recent advances summarized in this paper can provide valuable references for the development of personalized and precision medicine as well as drug safety evaluation.

关键词

遗传异质性药物毒副作用 / 人类白细胞抗原 / 机制

Key words

idiosyncratic adverse drug reactions / human leukocyte antigen / mechanism

引用本文

导出引用
王佳宁, 王晓钰, 施婷婷, 陈麟鑫, 梅虎. 人类白细胞抗原限制性遗传异质性药物毒副作用研究进展[J]. 中国药学杂志, 2021, 56(1): 1-7 https://doi.org/10.11669/cpj.2021.01.001
WANG Jia-ning, WANG Xiao-yu, SHI Ting-ting, CHEN Lin-xin, MEI Hu. Advances in the Association of HLA Alleles with Idiosyncratic Adverse Drug Reactions[J]. Chinese Pharmaceutical Journal, 2021, 56(1): 1-7 https://doi.org/10.11669/cpj.2021.01.001
中图分类号: R965   

参考文献

[1] MALLAL S, NOLAN D, WITT C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir[J]. Lancet, 2002, 359(9308):727-732.
[2] KANG H R, JEE Y K, KIM Y S, et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans[J]. Pharmacogenet Genom, 2011, 21(5):303-307.
[3] HUNG S L, CHUNG W H, LIOU L B, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol[J]. Proc Nat Acad Sci, 2005, 102(17):6237-6237.
[4] TASSANEEYAKUL W, JANTARAROUNGTONG T, CHEN P, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population[J]. Pharmacogenet Genom, 2009, 19(9):704-709.
[5] KANIWA N, SAITO Y, AIHARA M, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis[J]. Pharmacogenomics, 2008, 9(11):1617-1622.
[6] LONJOU C, BOROT N, SEKULA P, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs[J]. Pharmacogenet Genom, 2008, 18(2):99-107.
[7] GENIN E, CHEN D P, HUNG S I, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and Meta-analysis[J]. Pharmacogenomics, 2014, 14(3):281-288.
[8] HETHERINGTON S, HUGHES A R, MOSTELLER M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir[J]. Lancet, 2002, 359(9312):1121-1122.
[9] MARTIN A M, NOLAN D, GAUDIERI S, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant[J]. Proc Natl Acad Sci USA, 2004, 101(12):4180-4185.
[10] LUCENA M I, MOLOKHIA M, SHEN Y, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles[J]. Gastroenterology, 2011, 141(1):338-347.
[11] STEPHENS C, LOPEZ-NEVOT M A, RUIZ-CABELLO F, et al. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity[J]. PLoS One, 2013, 8(7):e68111.
[12] ALFIREVIC A, PIRMOHAMED M. Genomics of adverse drug reactions[J]. Trends Pharmacol Sci, 2017, 38(1):100-109.
[13] ZHANG Y, WANG J, ZHAO L M, et al. Strong association between HLA-B*1502 and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in mainland Han Chinese patients[J]. Eur J Clin Pharmacol, 2011, 67(9):885-887.
[14] WU X T, HU F Y, AN D M, et al. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B*1502 allele among patients in central China[J]. Epilepsy Behav, 2010, 19(3):405-408.
[15] HUNG S L, CHUNG W H, JEE S H, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions[J]. Pharmacogenet Genom, 2006, 16(4):297-306.
[16] KULKANTRAKORN K, TASSANEEYAKUL W, TIAMKAO S, et al. HLA-B*1502 strongly predicts carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Thai patients with neuropathic pain[J]. Pain Pract, 2012, 12(3):202-208.
[17] CHANG C C, TOO C, MURAD S, et al. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome in the multi-ethnic Malaysian population[J]. Int J Dermatol, 2011, 50(2):221-224.
[18] LOCHARERNKUL C, LOPLUMLERT J, LIMOTAI C, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population[J]. Epilepsia, 2008, 49(12):2087-2091.
[19] MEHTA T Y, PRAJAPATI L M, MITTAL B, et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians[J]. Indian J Dermatol VE, 2009, 75(6):579-582.
[20] KANIWA N, SAITO Y, AIHARA M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients[J]. Epilepsia, 2010, 51(12):2461-2465.
[21] KIM S H, LEE K W, SONG W J, et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans[J]. Epilepsy Res, 2011, 97(1-2):190-197.
[22] MCCORMACK M, ALFIREVIC A, BOURGEOIS S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans[J]. N Engl J Med, 2011, 364(12):1134-1143.
[23] OZEKI T, MUSHIRODA T, YOWANG A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population[J]. Hum Mol Genet, 2011, 20(5):1034-1041.
[24] ZHANG F R, LIU H, IRWANTO A, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome[J]. N Engl J Med, 2013, 369(17):1620-1628.
[25] DALY A K, DONALDSON P T, BHATNAGAR P, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin[J]. Nat Genet, 2009, 41(7):816-819.
[26] HUNG S L, CHUNG W H, LIU Z S, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese[J]. Pharmacogenomics, 2010, 11(3):349-356.
[27] FRICKE-GALINDO I, MARTINEZ-JUAREZ I E, MONROY-JARAMILLO N, et al. HLA-A*02:01:01/-B*35:01:01/-C*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican Mestizo patients[J]. Pharmacogenomics, 2014, 15(15):1881-1891.
[28] SHI Y W, MIN F L, LIU X R, et al. HLA-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the Han Chinese population[J]. Basic Clin Pharmacol Toxicol, 2011, 109(1):42-46.
[29] KIM S H, KIM M, LEE K W, et al. HLA-B*5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis[J]. Pharmacogenomics, 2010, 11(6):879-884.
[30] YANG F, XUAN J, CHEN J, et al. HLA-B*59:01: a marker for Stevens-Johnson syndrome/toxic epidermal necrolysis caused by methazolamide in Han Chinese[J]. Pharmacogenomics, 2016, 16(1):83-87.
[31] CARR D F, CHAPONDA M, JORGENSEN A L, et al. Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIV-infected population[J]. Clin Infect Dis, 2013, 56(9):1330-1339.
[32] YUAN J, GUO S, HALL D, et al. Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent[J]. AIDS, 2011, 25(10):1271-1280.
[33] KEANE N M, PAVLOS R K, MCKINNON E, et al. HLA class Ⅰ restricted CD8+ and class Ⅱ restricted CD4+ T cells are implicated in the pathogenesis of nevirapine hypersensitivity[J]. AIDS, 2014, 28(13):1891-1901.
[34] CHANTARANGSU S, MUSHIRODA T, MAHASIRIMONGKOL S, et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients[J]. Pharmacogenet Genom, 2009, 19(2):139-146.
[35] CHEN C B, HSIAO Y H, WU T, et al. Risk and association of HLA with oxcarbazepineinduced cutaneous adverse reactions in Asians[J]. Neurology, 2017, 88(1):78-86.
[36] MAN C B, KWAN P, BAUM L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese[J]. Epilepsia, 2007, 48(5):1015-1018.
[37] HARDING D J, SUBRAMANIAM K, MACQUILLAN G, et al. Severe drug-induced hypersensitivity syndrome with a shared HLA-B allele[J]. Med J Aust, 2012, 197(7):411-413.
[38] TASSANEEYAKUL W, PRABMEECHAI N, SUKASEM C, et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population[J]. Pharmacogenet Genom, 2016, 26(5):225-234.
[39] LONJOU C, BOIOT N, SEKULA P, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs[J]. Pharmacogenet Genom, 2008, 18(2):99-107.
[40] ROBINSON J, HALLIWELL J A, HAYHURST J D, et al. The IPD and IMGT/HLA database: allele variant databases[J]. Nucleic Acids Res, 2015, 43(D1):D423-D431.
[41] LANDSTEINER K, JACOBS J. Studies on the sensitization of animals with simple chemical compounds[J]. J Exp Med, 1935, 61(5):643-656.
[42] FAULKNER L, MENG X L, PARK B K, et al. The importance of hapten-protein complex formation in the development of drug allergy[J]. Curr Opin Allergy Clin Immunol, 2014, 14(4):293-300.
[43] JENKINS R E, MENG X, ELLIOTT V L, et al. Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSAin vitroand in vivo[J]. Proteomics Clin Appl, 2009, 3(6):720-729.
[44] PICHLER W J, BEELER A, KELLER M, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept[J]. Allergol Int, 2006, 55(1):17-25.
[45] PICHLER W J. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept[J]. Curr Opin Allergy Clin Immunol, 2002, 2(4):301-305.
[46] PICHLER W J. Direct T-cell stimulations by drugs—bypassing the innate immune system[J]. Toxicology, 2005, 209(2):95-100.
[47] CHESSMAN D, KOSTENKO L, LETHBORG T, et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity[J]. Immunity, 2008, 28(6):822-832.
[48] YUN J, MATTSSON J, SCHNYDER K, et al. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response[J]. Clin Exp Allergy, 2013, 43(11):1246-1255.
[49] WUILLEMIN N, ADAM J, FONTANA S, et al. HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin[J]. J Immunol, 2013, 190(10):4956-4964.
[50] NORCROSS M A, LUO S, LU L, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity[J]. AIDS, 2012, 26(11):F21-29.
[51] PICHLER W J, ADAM J, WATKINS S, et al. Drug hypersensitivity: how drugs stimulate T cells via pharmacological interaction with immune receptors[J]. Int Arch Allergy Immunol, 2015, 168(1):13-24.
[52] ILLING P T, VIVIAN J P, DUDEK N L, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire[J]. Nature, 2012, 486(7404):554-558.
[53] OSTROV D A, GRANT B J, POMPEU Y A, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire[J]. Proc Natl Acad Sci USA, 2012, 109(25):9959-9964.
[54] UNUTMAZ D, ADAM J, WUILLEMIN N, et al. Abacavir induced T cell reactivity from drug naïve individuals shares features of allo-immune responses[J/OL]. PLoS One, 2014, 9(4) [2014-04-21]. 10.1371/journal.pone.0095339.
[55] HIRASAWA M, HAGIHARA K, OKUDAIRA N, et al. The possible mechanism of idiosyncratic lapatinib-induced liver injury in patients carrying human leukocyte antigen-DRB1*07:01[J/OL]. PLoS One, 2015, 10(6)[2015-06-22]. 10.1371/journal.pone.0130928.
[56] HIRASAWA M, HAGIHARA K, ABE K, et al. In silico and in vitro analysis of interaction between ximelagatran and human leukocyte antigen (HLA)-DRB1*07:01[J]. Int J Mol Sci, 2017, 18(4):694.
[57] METUSHI I G, WRISTON A, BANERJEE P, et al. Acyclovir has low but detectable influence on HLA-B*57:01 specificity without inducing hypersensitivity[J]. PLoS One, 2015, 10(5)[2015-05-29]. 10.1371/journal.pone.0124878.
[58] KO T M, CHUNG W H, WEI C Y, et al. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome[J]. J Allergy Clin Immunol, 2011, 128(6):1266-1276.
[59] WATKINS S, PICHLER W J. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVbeta20-1, altering pHLA recognition[J/OL]. PLoS One, 2013, 8(10) [2013-10-07]. 10.1371/journal.pone.0076211.
[60] ZHOU P, ZHANG S, WANG Y, et al. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis[J]. J Biomol Struct Dyn, 2016, 34(8):1806-1817.
[61] WHITE K D, ABE R, ARDERN-JONES M, et al. SJS/TEN 2017: building multidisciplinary networks to drive science and translation[J]. J Allergy Clin Immunol Pract, 2018, 6(1):38-69.
[62] CAUDLE K E, RETTIE A E, WHIRL-CARRILLO M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing[J]. Clin Pharmacol Ther, 2014, 96(5):542-548.
[63] CHUNG W H, CHANG W C, LEE Y S, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions[J]. JAMA, 2014, 312(5):525-534.
[64] CARR D F, BOURGEOIS S, CHAPONDA M, et al. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population[J]. J Antimicrob Chemother, 2017, 72(4):1152-1162.
[65] KENNA T J, ROBINSON P C, HAROON N. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis[J]. Rheumatology, 2015, 54(9):1549-1556.
[66] LUCAS A, LUCAS M, STRHYN A, et al. Abacavir-reactive memory T cells are present in drug naive individuals[J/OL]. PLoS One, 2015, 10(2)[2015-02-12]. 10.1371/journal.pone.0117160.
[67] HETHERINGTON S, MCGUIRK S, POWELL G, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir [J]. Clin Therap, 2001, 23(10):1603-1614.
[68] ARROYO S, DE LA MORENA A. Life-threatening adverse events of antiepileptic drugs[J]. Epilepsy Res, 2001, 47(1-2):155-174.
[69] PICHLER W, YAWALKAR N, SCHMID S, et al. Pathogenesis of drug-induced exanthems[J]. Allergy, 2002, 57(10):884-893.
[70] WHITE K D, CHUNG W H, HUNG S I, et al. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response[J]. J Allergy Clin Immunol, 2015, 136(2):219-234.
[71] DUONG T A, VALEYRIE-ALLANORE L, WOLKENSTEIN P, et al. Severe cutaneous adverse reactions to drugs[J]. Lancet, 2017, 390(10106):1996-2011.
[72] PARA O, CRISPINO P, BARONE N, et al. Sex differences in adverse drug reaction and liver disease[J]. Italian J Med, 2018, 12(1):15.
[73] HORNBERG J J, LAURSEN M, BRENDEN N, et al. Exploratory toxicology as an integrated part of drug discovery. Part I: why and how[J]. Drug Discov Today, 2014, 19(8):1131-1136.
[74] ARROWSMITH J, MILLER P. Trial watch: phase Ⅱ and phase Ⅲ attrition rates 2011-2012[J]. Nat Rev Drug Discov, 2013, 12(8):569.
[75] SWINNEY D C, ANTHONY J. How were new medicines discovered?[J]. Nat Rev Drug Discov, 2011, 10(7):507-519.
[76] BERG E L, HSU Y C, LEE J A. Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery[J]. Adv Drug Deliv Rev, 2014, 69-70:190-204.
[77] HOUCK K A, KAVLOCK R J. Understanding mechanisms of toxicity: insights from drug discovery research[J]. Toxicol Appl Pharmacol, 2008, 227(2):163-178.
[78] BERG E L, YANG J, MELROSE J, et al. Chemical target and pathway toxicity mechanisms defined in primary human cell systems[J]. J Pharmacol Toxicol Methods, 2010, 61(1):3-15.
[79] XU J J, HENSTOCK P V, DUNN M C, et al. Cellular imaging predictions of clinical drug-induced liver injury[J]. Toxicol Sci, 2008, 105(1):97-105.
[80] IVANOV S M, LAGUNIN A A, POROIKOV V V. In silico assessment of adverse drug reactions and associated mechanisms[J]. Drug Discov Today, 2016, 21(1):58-71.
[81] NICOLETTI P, AITHAL G P, BJORNSSON E S, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study[J]. Gastroenterology, 2017, 152(5):1078-1089.
[82] KARNES J H, SHAFFER C M, BASTARACHE L, et al. Comparison of HLA allelic imputation programs[J/OL]. PLoS One, 2017, 12(2) [2017-02-16]. 10. 1371/journal. pone. 0172444.
[83] VAN DEN DRIESSCHE G, FOURCHES D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study[J]. J Cheminform, 2017, 9(13) [2017-03-04]. 10.1186/s13321-017-0202-6.
[84] WEI C Y, CHUNG W H, HUANG H W, et al. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome[J]. J Allergy Clin Immunol, 2012, 129(6):1562-1569.
[85] LUO H, DU T T, ZHOU P, et al. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions[J]. Combin Chem High Through Screen, 2015, 18(3):296-304.

基金

中央高校前沿交叉项目资助(106112017CDJQJ238816)
PDF(1110 KB)

Accesses

Citation

Detail

段落导航
相关文章

/